If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.15x2 + -5x + 179 = 0 Reorder the terms: 179 + -5x + 0.15x2 = 0 Solving 179 + -5x + 0.15x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 0.15 the coefficient of the squared term: Divide each side by '0.15'. 1193.333333 + -33.33333333x + x2 = 0 Move the constant term to the right: Add '-1193.333333' to each side of the equation. 1193.333333 + -33.33333333x + -1193.333333 + x2 = 0 + -1193.333333 Reorder the terms: 1193.333333 + -1193.333333 + -33.33333333x + x2 = 0 + -1193.333333 Combine like terms: 1193.333333 + -1193.333333 = 0.000000 0.000000 + -33.33333333x + x2 = 0 + -1193.333333 -33.33333333x + x2 = 0 + -1193.333333 Combine like terms: 0 + -1193.333333 = -1193.333333 -33.33333333x + x2 = -1193.333333 The x term is -33.33333333x. Take half its coefficient (-16.66666667). Square it (277.7777779) and add it to both sides. Add '277.7777779' to each side of the equation. -33.33333333x + 277.7777779 + x2 = -1193.333333 + 277.7777779 Reorder the terms: 277.7777779 + -33.33333333x + x2 = -1193.333333 + 277.7777779 Combine like terms: -1193.333333 + 277.7777779 = -915.5555551 277.7777779 + -33.33333333x + x2 = -915.5555551 Factor a perfect square on the left side: (x + -16.66666667)(x + -16.66666667) = -915.5555551 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 3s-7=s+3 | | -4(x+1.8)+5.2=0 | | 22x^2+8x-61=0 | | -6(2x-4)=3x-3(5x-8) | | 3(6-i)=-3 | | 5(q-2)=10 | | 5-3x=3x-4 | | 4/3=1/3(-5/3+y/2) | | 6x^2+2x^2-1=0 | | 2x+4+4x= | | 5x+55y=30 | | 6(2x+4)=-10x+2 | | -9-(-20)+(-10)-19= | | 5m+6=2m+15 | | 5[8+7(8-7)]= | | 84=2l+2w | | 0.07x+0.12y=0.1*350 | | 3(v-1)-1=-4(-3v+4)-v | | 4y/3=1/3(-5/3+y/2) | | 3m+4=5m-4 | | 4-(6x-4)= | | 10x-(5+3x-7)=12-(2x+13) | | 4(e+3)=22 | | 3(v-1)-1=-4(-3+4)-v | | 5(t+4)=25 | | 4(3x+1)+3(x+3)=28 | | 4x/5-3/10x=x-7/2 | | X-2m=18 | | (z^2+6z-8)*(z^2-z-7)= | | -3+9+(-5)= | | 30+6y+14x=0 | | 3k+10=q |